Complete Budding and Asymmetric Division of Primitive Model Cells To Produce Daughter Vesicles with Different Interior and Membrane Compositions
نویسندگان
چکیده
Asymmetric cell division is common in biology and plays critical roles in differentiation and development. Unicellular organisms are often used as model systems for understanding the origins and consequences of asymmetry during cell division. Although basic as compared to mammalian cells, these are already quite complex. We report complete budding and asymmetric fission of very simple nonliving model cells to produce daughter vesicles that are chemically distinct in both interior and membrane compositions. Our model cells are based on giant lipid vesicles (GVs, 10-30 μm) encapsulating a polyethylene glycol (PEG)/dextran aqueous two-phase system (ATPS) as a crowded and compartmentalized cytoplasm mimic. Ternary lipid compositions were used to provide coexisting micrometer-scale liquid disordered (L(d)) and liquid ordered (L(o)) domains in the membranes. ATPS-containing vesicles formed buds when sucrose was added externally to provide increased osmotic pressure, such that they became not only morphologically asymmetric but also asymmetric in both their interior and their membrane compositions. Further increases in osmolality drove formation of two chemically distinct daughter vesicles, which were in some cases connected by a lipid nanotube (complete budding), and in others were not (fission). In all cases, separation occurred at the aqueous-aqueous phase boundary, such that one daughter vesicle contained the PEG-rich aqueous phase and the other contained the dextran-rich aqueous phase. PEGylated lipids localized in the L(o) domain resulted in this membrane domain preferentially coating the PEG-rich bud prior to division, and subsequently the PEG-rich daughter vesicle. Varying the mole ratio of lipids resulted in excess surface area of L(o) or L(d) membrane domains such that, upon division, this excess portion was inherited by one of the daughter vesicles. In some cases, a second "generation" of aqueous phase separation and budding could be induced in these daughter vesicles. Asymmetric fission of a simple self-assembled model cell, with production of daughter vesicles that harbored different protein concentrations and lipid compositions, is an example of the seemingly complex behavior possible for simple molecular assemblies. These compartmentalized and asymmetrically dividing ATPS-containing GVs could serve as a test bed for investigating possible roles for spatial and organizational cues in asymmetric cell division and inheritance.
منابع مشابه
A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae.
The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and daughter ensures that the yeast strain...
متن کاملAsymmetric Cell Division in Polyploid Giant Cancer Cells and Low Eukaryotic Cells
Asymmetric cell division is critical for generating cell diversity in low eukaryotic organisms. We previously have reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride demonstrate the ability to use an evolutionarily conserved process for renewal and fast reproduction, which is normally confined to simpler organisms. The budding yeast, Saccharomyces cerevisiae, which re...
متن کاملReplicating vesicles as models of primitive cell growth and division.
Primitive cells, lacking the complex bio-machinery present in modern cells, would have had to rely on the self-organizing properties of their components and on interactions with their environment to achieve basic cellular functions such as growth and division. Many bilayer-membrane vesicles, depending on their composition and environment, can exhibit complex morphological changes such as growth...
متن کاملA novel actin-related protein is associated with daughter cell formation in Toxoplasma gondii.
Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of a...
متن کاملCompartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell
In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane...
متن کامل